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JUSTICE AND TRUTH IN GRADES AND
THEIR AVERAGES

John M. Vickers

::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Grade point averages (GPAs) are calculated by assigning numbers to letter grades
and averaging them. Simple examples show that the method cannot consistently
determine class rank since class rank is sometimes permuted with arbitrary change
of scale. This permutation is only possible when one student is somewhere worse
and somewhere better than a second. The distinction between these and other sorts
of cases is established by theorems proved in an appendix. Relativistic attempts to
resolve the inconsistency are shown to be insufficient. The function of GPAs as pre-
dictors is briefly discussed.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

1. INTRODUCTION1

The function and use of grading in secondary schools, colleges, and universi-
ties, are much discussed, and understandably so, for academic grades have deep
and lasting effects in people’s lives. Although performance on specific examina-
tions commonly serves as a criterion for judging the suitability of applicants for
professional and graduate schools, undergraduate grades, typically through
grade point averages (GPAs) also play a significant role in these decisions. The
role of secondary school grades and their averages in admission to colleges and
universities is even more pronounced; a difference of a few points in GPA may
mean the difference between acceptance and rejection by the college of one’s
choice.

Grading is often criticized as overly subjective; the widespread phenomenon
of grade inflation is lamented. A grade from a large public high school is worth
less than the same grade from a top-echelon preparatory school. There is no
agreement on what grades mean in general or in particular: The question of
what is or should be measured is vexed. Is the object of grades student perfor-

John M. Vickers, Department of Philosophy, Claremont Graduate University, 736 North College
Avenue, Claremont, CA 91711; e-mail: John.Vickers@cgu.edu.

141

0361-0365/00/0400-0141$18.00/0  2000 Human Sciences Press, Inc.



142 VICKERS

mance, or aptitude, or effort, or teacher approval? Should grades take into ac-
count the extent to which a student’s knowledge or performance improves in a
course? Again, grading is applied in widely different ways. In some institutions
both grades for a repeated course are counted, in others only the second grade.
Extracurricular activities, such as volunteer work, though they have little or no
bearing on students’ knowledge or performance, can also affect grades. There is,
in short, little uniformity in grading practices across and even within institutions.

Grade averaging, since grades are the raw material on which it works, is
subject to these infirmities as well as others.2 Grade averages, it is said, and one
can hardly contest this, fail to distinguish easy from difficult courses; an A in
pottery weighs as heavily in the GPA as does an A in calculus or in the philoso-
phy of Kant. This has the undesirable effect of encouraging students to avoid
difficult courses in favor of easy ones in the end of maximizing the GPA. Simi-
larly, grade averages are insensitive to the number of courses taken; a student
who takes three courses and does well in them will have a better GPA than her
colleague who has the same grades in these same three courses and does less
well in a fourth and more difficult course (Siegel and Anderson, 1991). Nor can
grade averages distinguish between different skills: The historian who does
poorly in physics has the same GPA as the physicist who does poorly in history,
and neither of these is distinguished from the student who does mediocre work
in both physics and history. But these differences in talent are essential to the
evaluation of academic accomplishment and aptitude. There is also considerable
confusion sown by the great diversity of systems for averaging grades. In efforts
to overcome or neutralize some of the difficulties just mentioned, some institu-
tions weight grades in difficult courses more heavily, either by using weighted
averages or by giving bonus points for enrollment. Other institutions may add a
factor to the GPA in the interests of affirmative action for minorities or under-
privileged students.

The general function of grading and grade averaging is to preserve and trans-
mit information. What is preserved and transmitted is necessarily a very incom-
plete abstraction from the total history of student performance. A student’s grade
in a course (one of the standard five A–E grades) is an effort to capture in one
of five letters a relevant evaluation of her work in that course. A student’s GPA
abstracts even further; the GPA aims to carry information about a student’s
complete academic performance, in many courses, typically in three digits.
Given the richness, the great diversity, and the complexity of academic work, it
is not surprising that grades and grade averages are often insufficiently informa-
tive. It is highly implausible that any so sparsely structured system of informa-
tion transmission could preserve and carry what we ask of grades and GPAs.

Although there is a voluminous literature on grades and averaging, the simple
structural properties of the grading and averaging system have been largely
ignored. And that is the topic of this article. In what follows, grading is simply
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characterized as a system of measurement and grade averaging is taken to be a
method—methods, for there are several ways in which the thing is done—for
calculating averages or expectations of grades. The attention is focused on struc-
tural features. To simplify the exposition, and also to broaden the import of
whatever results might be obtained, it is assumed throughout that grades provide
an objective measure of the quality of student work, and that there is a clear
meaning to the ordering of work in terms of quality; to comparisons of the form
“work X is at least as good as work Y.” Grades are assumed to be not relative
to teachers or evaluators. These assumptions amount to assuming that the sub-
stantive difficulties with grading, such as those mentioned above, are not essen-
tial to the process and that the system could be improved so as to settle or
obviate its shortcomings.

This simplification is a device to enable the examination of grade averaging
unhindered by the aporias and infirmities of the grading process. The questions
to ask about grade averaging are first, what its minimal essential functions are,
and second whether present methods can fulfill those functions. The next section
sets down some simple structural principles about grading and gives a few ex-
amples of numerical codings for representing letter grades. Section 3 shows that
grade averaging is inconsistent. This is a partial and negative response to the
question of whether it can fulfill what is required of it. This inconsistency is
simple and obvious, so much so that it is surprising that it has not (as far as I
have been able to find out) been pointed out before. Section 4 begins with a
few general remarks on measurement and averaging. Two theorems (The Com-
parability and Incomparability theorems) then localize the inconsistency and
distinguish cases in which averaging is inconsistent from those in which it is
benign. Section 5 remarks briefly on the relativistic affection for inconsistent
methods. Section 6 considers and solves a puzzle about GPAs, namely, how it is
that an inconsistent method has nevertheless some (admittedly weak) predictive
power. Section 7 discusses precision in grading and percentage grades. The final
section is an effort to draw some general conclusions from the preceding results
and to propose a few actions and policies. An appendix is included in which the
Comparability and Incomparability theorems are proved.

Throughout, I have tried to make the exposition accessible and self-contained
for a general audience.

2. PRELIMINARIES: FUNCTIONS AND PRINCIPLES OF GRADING

Before broaching the matter of grade averages, it will help to set down a
few principles about grades themselves and to record some different ways of
representing them numerically. Recall that we assume there is a clear objective
meaning to the ordering of work in terms of quality; to comparisons of the form
“work X is at least as good as work Y.” A student’s grade gives objective
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information about the quality of her work in the subject. On these assumptions,
work of any grade is superior to work of any lower grade. Grades thus determine
relations of superiority (“X is better than Y”) and equivalence (“X is equivalent
to Y”) that satisfy the following simple ordering conditions, for all work X, Y,
and Z:

If X is better than Y and Y is better than Z then X is better than Z (transitivity)
If X is better than Y then Y is not better than X (asymmetry)
If X is equivalent to Y and Y is equivalent to Z then X is equivalent to Z

(transitivity)
X is equivalent to X (reflexivity)
If X is equivalent to Y then Y is equivalent to X (symmetry)
Either X is better than Y or Y is better than X or X is equivalent to Y (con-

nexity)

Conversely, in a sufficiently representative collection of work, partitioned or
divided by these relations into five exclusive equivalence classes, satisfaction of
these principles determines the grades of all work in the collection. (All the
work that is better than all work to which it is not equivalent is A work, all the
non-A work that is better than all non-A work to which it is not equivalent is
B work, and so on.) To repeat, we assume here that grades and the correspond-
ing ordering are objective; the relative value of the work is a genuine character
of it. B work is in fact better than C work.

Under this assumption of objectivity, grades share the structure of the mea-
surement of gem and mineral hardness as measured by the Moh’s scale. This
scale assigns numbers from 1 to 10 to minerals and gems. Hardness is deter-
mined by how difficult it is to scratch the substance: Talc, for example, has
hardness 1, gypsum 2, calcite 3, flourite 4, apatite 5, orthoclasse 6, quartz 7,
topaz 8, corundum 9, and diamond 10. As with grades and merit, the hardness
of all gems and minerals is determined by an ordering in terms of relations is
harder than and is equal in hardness to satisfying the same constraints as those
listed above for value of academic work; whatever is harder than topaz is harder
than quartz, and so on.

When it comes to assigning numbers to letter grades, there are a number of
systems. Perhaps most common is a four-point scale depicted in Table 1.

TABLE 1. Four-Point Scale

A B C D F

4 3 2 1 0
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TABLE 2. CGU Eight-Point Scale

A+ A A− B+ B B− C U (=E)

8 7 6 5 4 3 1 0

Though this scale is widespread, other scales are also in frequent use. My insti-
tution until quite recently used the eight-point scale of Table 2, in which grades
of D are not scored. This scale recently was replaced by a ramification of the
four-point scale, depicted in Table 3, in which intermediate codings for plus and
minus grades are interpolated. One even finds different scales used in the same
institution at the same time. In one secondary school district, board policy re-
quires ordering courses by difficulty in five levels.3 Letter grades are assigned
points as shown in Table 4 (Level I easiest, Level V most difficult).

Scale I of Table 4 is the four-point scale of Table 1. The eight-point scale of
Table 2 differs from all five of the multiple scales in Table 4. To facilitate
comparison, Table 5 gives the scale of Table 2 omitting plus and minus grades.
Again, D is not scored. The above scales are displayed together in Table 6 for
ease of reference:

Let’s draw a few conclusions from these examples. First, the different scales
all codify the same information, except for the omission of D grades in the CGU
scales, and are easily translated among themselves without loss of information.
From this it follows that differences among the scales are matters of convention
and represent no facts about the merit of student work. That an A (= 4) has
twice the value of a C (= 2) in the four-point and ramified four-point scales
does not signify that A work is twice as good as C work, for this relation
between the values of A and C holds in no other scale. That C (= 4) is midway
between A (= 6) and D (= 2) in Scale III does not signify that C work is midway
in merit between A work and D work, for this relation holds in no other scale.
That is to say that comparisons of the form “X work is twice as good as Y
work,” and “X work is midway in merit between Y work and Z work” are not
facts about the merit of student work; these are artifacts of the conventions that
differentiate the scales. Indeed, the comparison of the above scales, all of which
adequately represent letter grades, makes it evident that the simple ordering

TABLE 3. CGU Ramified Four-Point Scale

A+ A A− B+ B B− C C− U (=E)

4.0 4.0 3.7 3.3 3.0 2.7 2.0 1.7 0
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TABLE 4. Multiple Scales

Level A B C D E (=F)

I 4.00 3.00 2.00 1.00 0
II 5.00 4.00 3.00 1.50 0
III 6.00 5.00 4.00 2.00 0
IV 7.00 6.00 5.00 2.50 0
V 8.00 7.00 6.00 3.00 0

conditions describe completely the information carried in letter grades. This can
be put succinctly: Any numerical assignment that assigns higher numbers to
higher grades is an adequate representation. This modest conclusion is worth a
definition and a principle:

An assignment γ of numbers to letter grades is an ordinal scale if and only if γ
always assigns higher numbers to higher grades.

Ordering principle. All ordinal scales are adequate numerical representations of
letter grades.

Comparisons among scales will be helped along by another simple definition:

A numerical function ϕ is a monotone transformation if and only if ϕ always
assigns higher numbers to higher numbers.

Every monotone transformation of an ordinal scale is an ordinal scale, and all
monotone transformations of any ordinal scale are adequate numerical represen-
tations.

3. AVERAGING: TRACKING THE SOURCES OF CONTRADICTIONS

Grade averaging is a simple procedure. Numbers are assigned to grades in
some ordinal scale. The numbers assigned to certain grades, typically those of
one student in different courses, are added and the sum divided by the number

TABLE 5. Partial CGU Eight-Point Scale

A B C D E

8-pt 7 4 1 ? 0
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TABLE 6. Scales Compared

SCALE A B C D E

Partial CGU Eight-Point 7.00 4.00 1.00 ? 0
CGU Ramified Four-Point 4.00 3.00 2.00 ? 0
I (Four-Point) 4.00 3.00 2.00 1.00 0
II (Five-Point) 5.00 4.00 3.00 1.50 0
III (Six-Point) 6.00 5.00 4.00 2.00 0
IV (Seven-Point) 7.00 6.00 5.00 2.50 0
V (Eight-Point) 8.00 7.00 6.00 3.00 0

of grades in question. The result is the grade point average (GPA) of the collec-
tion of grades or the student. The primary function of GPAs is obvious—they
should provide a rank ordering of student work overall or on the average (Lang,
1997). In the simplest case, if two students have taken the same courses, the
student with the higher GPA should have done better work overall. The work
of students with the same GPA should be equivalent overall. Comparisons of
students whose courses do not coincide will be more delicate, but the simple
case will suffice for our purposes.

Grade averaging is sometimes benign and effective. If Aaron has five A’s
and Bernice has four A’s and a C then Aaron has clearly done better work than
Bernice overall. Their GPAs show this. Aaron has a higher GPA than Bernice
no matter what ordinal scale is used as a basis of the calculation. (See Table 7.)

Other cases are however less clear. Suppose that Justine and Maurice each
take 3 courses. Justine gets 2 A’s and 1 E and Maurice gets 3 C’s. Then Justine
has the higher GPA in the CGU eight-point scale, the ramified four-point scale,

TABLE 7. Aaron and Bernice

Aaron’s GPA Bernice’s GPA
Scale (5 A’s) (4 A’s, 1 C)

Parital CGU Eight-Point 7.0 5.8
CGU Ramified Four-Point 4.0 3.6
I (Four-Point) 4.0 3.6
II (Five-Point) 5.0 4.6
III (Six-Point) 6.0 5.6
IV (Seven-Point) 7.0 6.6
V (Eight-Point) 8.0 7.6
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and Scales I and II (see Table 8). Maurice has the higher GPA in Scales IV and
V, and they have the same GPA in Scale III. So 2 A’s and one E are better,
worse, or equivalent to 3 C’s, depending on the scale. It follows from this that
the relation between the average or overall merits of Maurice’s and Justine’s
work is a matter of convention, not a truth about their work.

The source of these contradictions is a feature of ordinal scales remarked
above, namely that comparisons of the form “X work is midway between Y
work and Z work” are not facts about the merit of student work, but artifacts of
the differences among adequate ordinal scales. We turn now to a more general
consideration of this.

4. GRADE AVERAGING AS ORDINAL MEASUREMENT

The order of students’ GPAs may vary with the ordinal scale that represents
their grades. This means that GPAs cannot fulfill their primary function, which
is to provide a rank ordering of student work overall or on average. The source
of this is that midpoints are not invariant in ordinal measurement. A few general
remarks about measurement should make it clear that this is essential to the
method and not a matter of detail.4

Only some properties and relations of numbers represent properties and rela-
tions of objects or substances to which they are assigned in measurement. To
assume otherwise—that every numerical property and relation represents some
property or relation among the things numbered or measured—is a fallacy. Let
us call this the numerological fallacy. The simple way to detect the numerologi-
cal fallacy is to look at alternative systems of measurement that are equivalent
in the sense that they carry the same information. Then relations that vary
among these equivalent systems are artifacts of the process, not representative
of reality. That is the method used above to show that grade midpoints are

TABLE 8. Justine and Maurice

Scale Justine (2 A’s, 1 E) Maurice (3 C’s)

Partial CGU Eight-Point 4.67 > 1.00
CGU Ramified Four-Point 2.67 > 2.00
I (Four-Point) 2.67 > 2.00
II (Five-Point) 3.33 > 3.00
III (Six-Point) 4.00 = 4.00
IV (Seven-Point) 4.67 < 5.00
V (Eight-Point) 5.33 < 6.00
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artifacts of the grading scale, not facts about the merit of student work. The
measurement of hardness is analogous. That the integers from one to ten are
used as labels for the hardness equivalence classes is immaterial; any numbers
(e.g., 0, 1, 3, 4, 5, 6, 9, 11, 13, 15) that preserve the order of hardness will do
as well. This lets us see that midpoints in assigned numbers do not correspond
to any midpoint relation in hardness: Is it gypsum or is it orthoclasse that is
midway in hardness between calcite and quartz? Five is midway between 3 and
7, 6 is midway between 3 and 9, so, since both numerical assignments ade-
quately represent the facts, these differences correspond to no relation in fact.
Midpoints in hardness do not exist. Of course the midpoints of the numbers that
represent hardness exist, but this represents no objective feature of the objects
or their relations. There are no substances that are midway in hardness between
gypsum and orthoclasse, because “midway” has no sense in this context.

Measurement yields objective information strong to the extent that relations
and properties do not vary with the scale. Thus weights and lengths support
comparisons of the form “X is twice (or ten times) the weight or length of Y.”
We can see this by noticing that such claims are independent of, for example,
avoirdupois or metric scales of weight: if X and Y weigh 1 and 2 kilos respec-
tively, then they also weigh 2.2 and 4.4 pounds, and this ratio, X is half the
weight of Y, must obtain in any adequate scale of weight measurement. The
weight of one object, however, cannot be said to be the square of the weight
of another, for this relation changes with the system: 12 = 1 but 2.22 = 4.84, so
squares of weight do not exist.5 Of course the squares of the numbers that repre-
sent weight exist, but this represents no objective feature of the weighed objects
or their relations. That the avoirdupois weight of X is the square of that of Y
refers to no property or relation of X and Y, it is a numerical property that
represents no non-numerical fact.

Temperature provides other good examples of measurement strength. Tem-
perature multiples do not exist: 5° Celsius equals 41° Fahrenheit; 10° Celsius
equals 50° Fahrenheit. Ten is twice 5, but 50 is not twice 41. To say that today
is twice as hot as yesterday is thus to subscribe to a numerological fallacy,
importing into the physical phenomena irrelevant characteristics of the numbers
used to represent them. Temperature measurement is—since temperature ratios
are not objective—weaker than the measurement of weight or length.6 It is,
however, stronger than the measurement of hardness described in section 2
above, for temperature midpoints do exist. Celsius temperatures 5°, 10°, and
15° are equal to Fahrenheit temperatures 41°, 50°, and 59°. Ten is the midpoint
of 5 and 15, just as 50 is the midpoint of 41 and 59.

The ordinal measurement of hardness and that of students’ work, we have
seen, is weaker still. Here neither the squares, nor multiples, nor midpoints of
numbers assigned have any fixed meaning. It is only relations of order that are
invariant with scale. These truths are summarized in Table 9.
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TABLE 9. Invariants

Greater than,
Measurement Equal to Midpoints Multiples Squares

Weight, length yes yes yes do not exist
Temperature yes yes do not exist do not exist
Hardness, grades yes do not exist do not exist do not exist

To say that midpoints are invariant is just to say that if γ and δ are adequate
scales and X, Y, and Z any measured objects, then

1/2[γ(X) + γ(Y)] = γ(Z) if and only if 1/2[δ(X) + δ(Y)] = δ(Z)

Midpoints, we have just seen, are invariant in the measurement of weight,
length, and temperature, but not in the measurement of hardness or in grading.
C is midway between A and E in the four-point system, but just one-eighth of
the way in the eight-point system. This is the precise source of the contradictions
and relativity described in the previous section. Let us state this as a law about
averages and midpoints:

Law of averages and midpoints. If averages exist in a form of measurement,
then midpoints are invariant in that form.

Since midpoints do not exist in grading, averaging, as the examples of section
3 make evident, leads to inconsistencies. We saw earlier, however, that in some
cases averaging is benign. This does not purge the method of its inconsistency,
but it does invite a closer look at the two sorts of cases in an effort to localize
that inconsistency.

A little vocabulary and a few principles will ease the way here. By a profile
is meant a sequence of grades of fixed and finite length, k. Profiles are ordered
k-tuples of grades. To keep things simple, we consider profiles all of the same
length, k, and we assume as well that courses are of equal weight. We consider
first the comparison of pairs of profiles, for the minimum essential function of
GPAs is to provide an unequivocal comparison of these. Recall the examples of
Aaron and Bernice and Maurice and Justine.

Aaron: <A, A, A, A, A>
Bernice: <C, A, A, A, A>
Maurice: <C, C, C>
Justine: <E, A, A>
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Aaron is never worse and somewhere better than Bernice. It is easy to see and
to prove that Aaron’s GPA is higher than Bernice’s in every ordinal scale:
Suppose that a and c are the numbers that represent A and C respectively in an
ordinal scale. Then a > c, so

5a > 4a + c

(1/5)(5a) > (1/5)(4a + c)

Conversely, Maurice has a higher GPA than Justine on the seven-point scale,
in which e = 0, c = 5, and a = 7:

(1/3)(3c) = 5 > 4.67 = (1/3)(2a + e)

but Justine has a higher GPA than Maurice in the five-point scale (when e = 0,
c = 3, and a = 5):

(1/3)(3c) = 3 < 3.33 = (1/3)(2a + e).

And they have the same GPA in, for example, the scale

e = 0, d = 2, c = 4, b = 5, a = 6
where

(1/3)(3c) = 4 = (1/3)(2a + e).

The comparative magnitude of Maurice’s and Justine’s GPAs is thus completely
determined by convention, and it represents nothing about the comparative merit
of their work.

Other comparisons are less obvious and require some manipulation to effect.
Consider the pair p, q, of profiles

p = <C, D, A, D, E>
q = <D, E, C, A, C>.

Each is sometimes worse and sometimes better than the other. There are how-
ever permutations, p′, q′ of p and q in which p′ is never worse and sometimes
better than q′:

p′ =< E, D, C, C, A>
q′ =< E, D, D, C, A>.
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And reasoning as in the case of Aaron and Bernice shows that here too the
average of p (= the average of p′) is higher in every ordinal scale than that of q
(= the average of q′):

If e < d < c < a, then (1/5)(e + d + 2c + a) > (1/5)(e + 2d + c + a).

What counts, then, for the comparison of averages to be unequivocal is that
there should be permutations of the profiles one of which is nowhere worse and
somewhere better than the other. In such a case we say that the stronger profile
strictly dominates the weaker:

p strictly dominates q if and only if there are permutations p′ =< p′1, . . p′k> and
q′ =< q′1, . . q′k> of p and q such that p′i ≥ q′i for every i, and p′j > q′j for
some j.

Accompanying the definition of strict dominance is the obvious definition of
equivalence.

profiles p and q are equivalent if and only if they have the same numbers of all
grades.

Clearly p and q are equivalent if and only if for some permutations p′ and q′,
p′i = q′i for every i.

We say that p simply dominates q if p strictly dominates or is equivalent to q.

Strict dominance is a strict partial ordering of the set of all profiles; it is
transitive, asymmetric, and irreflexive. Equivalence is an equivalence relation
(transitive, reflexive, symmetric) and simple dominance is transitive and reflex-
ive. Profiles are equivalent if and only if each simply dominates the other.

Let us say that profiles are comparable if either simply dominates the other.
Similarly, a pair of profiles is comparable if the profiles are comparable. Though
strict and simple dominance and equivalence are transitive, comparability is not:
Maurice’s and Justine’s profiles <C, C, C> and <A, A, E> are both strictly
dominated by and hence comparable with <A, A, A>, but they are incomparable
with each other. Comparability classes must thus be defined in terms of pairwise
comparability:

A class Γ of profiles is said to be a comparability class if every pair of profiles
in Γ is comparable. If p and q are non-equivalent profiles in a comparability
class then one strictly dominates the other.

A simple example of a comparability class is the class of all constant pro-
files—profiles all members of which are the same (the sequence of k A’s, the
sequence of k B’s, etc.). Again, the class consisting of all profiles (of length k)
which include some or no A’s and some or no B’s is a comparability class.
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There are many overlapping comparability classes, and comparable profiles will
not in general belong to all the same comparability classes. Each comparability
class is strictly ordered by strict dominance: strict dominance is transitive and
asymmetric, and if p and q are nonequivalent members of the same comparabil-
ity class then one strictly dominates the other. So within a comparability class
the ordering of profiles by dominance is unequivocal. We need assume only
that strict dominance and equivalence represent difference and equivalence in
merit to conclude that each comparability class is unequivocally ordered by
relative merit:

Ordering assumption. If p strictly dominates q then p represents better work
overall than q. Equivalent profiles represent work that is equal overall in
merit.

Further, it now follows that grade averages within a comparability class are
unequivocal and conform to dominance in a precise sense:

Comparability theorem. If Γ is any comparability class, γ is any ordinal scale,
and p and q any members of Γ, then, where

µ(p) = (1/k)Σi γ(pi) and µ(q) = (1/k)Σi γ(qi)
µ(p) > µ(q) if and only if p strictly dominates q
µ(p) = µ(q) if and only if p and q are equivalent
µ(p) ≥ µ(q) if and only if p simply dominates q

The simple proof is given in the appendix.
It follows from the comparability theorem and the ordering assumption that

GPAs give an unequivocal representation of academic merit (as defined by the
ordering assumption) within each comparability class.

The comparability theorem gives a sufficient condition for the applicability
of grade averages. This condition is in fact also necessary. It is proved in the
appendix (The Incomparability Theorem) that if p and q are not comparable
then there are ordinal scales in which p has a greater average than q, in which
q has a greater average than p, and in which their averages are equal.7 It
follows from this that the relative magnitude of GPAs between incomparable
profiles does not represent dominance, or anything else for that matter. It de-
pends completely on scale. This localizes the inconsistency in grade averaging.

The general situation is as follows. An inclusive and unrestricted collection
of profiles (of fixed length k) will include numerous distinct comparability
classes. Within each of these classes, rank in order of overall scholarly merit is
determined by dominance and hence by GPA. In classes of profiles in which
not all members are comparable, however, this ordering is perturbed. Although
order among members of a comparability class is fixed by dominance and GPA,
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order between these and profiles with which they are incomparable is arbitrary;
dominance is not defined here and the order of averages varies with scale. This
means that a profile may rise or drop in relative rank in class with arbitrary
change of scale. A profile may be third in one comparability class, tenth in
another comparability class, and it may shift between fourth and fifteenth in the
inclusive class of all profiles, depending upon scale.

About this two remarks:

1. The numerological fallacy beckons here: The comparability theorem says
just that the relations greater than and equal to among GPAs represent
strictly dominates and is equivalent to among profiles within the same com-
parability class. The theorem justifies no comparisons of proportion or inter-
val, even among members of the same comparability class, for if p strictly
dominates q we can make the difference and ratio of their GPAs as (finitely
and positively) great or small as we like by judicious choice of scale. Thus
the relative sizes of differences in GPAs even among comparable profiles
signify nothing.

2. Information decreases with each successive representation. In the beginning,
let us suppose there is the complete record of each student’s work and perfor-
mance in each course throughout a scholarly career in, say, secondary school.
This presents an enormous dossier, much too big to be comprehended as
such, much less to be compared with those of other students. This huge
corpus is first represented in the course titles and grades for each student.
Absent the titles (and assuming for simplicity equal importance of courses),
we are left with the profiles. So far the information, if sparse, is coherent.
Comparison of comparable profiles allows a summary comparison of aca-
demic merit. Incomparable profiles permit no such comparison.

Enter GPAs accompanied by the definition of the scale in which the grades
are coded. If the collection of profiles forms a comparability class, and if we
know this, then the information provided by GPAs is, though sparse and
subject to the infirmities mentioned in the introduction, nevertheless coher-
ent. Higher GPA within the comparability class represents strict dominance
among profiles in that class, and by the ordering assumption, this represents
better scholarship overall. But if, as is virtually always the case, the collec-
tion of profiles is heterogeneous, including distinct comparability classes and
many incomparable profiles, then each GPA will represent a profile that
belongs to several distinct comparability classes, so each will be in several
distinct dominance orders. Some pairs of profiles will be incomparable, and
the order of the corresponding GPAs will thus not represent dominance or a
difference in scholarly merit. Other pairs will be comparable, and here the
order of the GPAs will represent dominance and a difference in merit, but
we can have no way of knowing which comparisons belong to which sort.
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That information is lost in the abstraction from profile to GPA. There is no
way to recoup it from the unadorned GPA, so the list of these carries more
noise than information.

5. RELATIVISM AND CONVENTION

This merits mention only because several people whom I should not other-
wise have thought differently abled apparently found it persuasive. If all parties
used one adequate system, then anomalies like the reversal of Justine’s and
Maurice’s standings might not come to light and the numerological fallacy
might fester undetected. Grade point averages, the argument runs, indicate
scholarly merit so long as some ordinal scale is universal. Ignorance, that is to
say, is blissful freedom from what it does not know. The same bucolic reasoning
would have it that, since the Moh’s scale is the only measure of relative hard-
ness in current use, gemologists could in fact say with impunity that orthoclasse
is midway between gypsum and diamond in hardness. And if all reference to
Celsius and Réaumur scales were suppressed, then it would in fact be twice as
hot in Dallas (50°) as in Great Falls (25°). The fallacy here is patent: On the
four-point scale C (= 2.0) is midway between A (= 4.0) and E (= 0). If that is
correct, then Justine is a better student overall than Maurice, and the eight-point
scale—according to which Maurice is a better student overall than Justine—is
wrong, for there the interval between A (= 8) and C (= 6) is 1/4 of that between
A and E (= 0). But both scales clearly and adequately represent all the facts.
The choice between them is a matter of convention, like the choice of Fahrenheit
or Celsius temperature and that of metric or avoirdupois weight measure. What-
ever is a fact, as distinct from an artifact of the system of representing the
facts, though it may be hidden, cannot be changed by even the most Draconian
enforcement of convention. Since the relative overall scholarly merit of Justine’s
and Maurice’s work varies with convention, there is no fact of the matter. That
Justine is a better student overall than Maurice is not a fact present in or entailed
by their scholastic records: 2 A’s and an E versus 3 C’s. There are no grade
midpoints, and where there are no midpoints, there can be no averages.

One might try to save averaging by resorting to subjectivism about grades; to
holding that grades are no more than the expression of the evaluator’s opinion,
that objective reference to quality is filtered through the appreciation of the
evaluator. This is an appealing view, conforming as it does to what is known
about the relativity of grades to evaluators, but it does nothing to strengthen
measurement as would be required to support consistent averaging. It is a fact
about the structure of grading that grades provide just a simple ordering, no
more. Such an ordering yields numbers under the constraint that greater numbers
represent higher places in the ordering, and this is insufficient to support aver-
ages. Evaluators’ opinions are in this respect like individual preferences for
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commodities or events. One gets preference midpoints only by some additional
device such as (in the case of preference orderings) gambles: a 50-50 gamble
on X and Y marks the preference or value midpoint between X and Y. There
looks to be no analogous device for grading.

6. A PUZZLE ABOUT PREDICTION8

If grade averages are meaningless, how is it that they predict, at least to some
extent, academic performance? Why do high school graduates with higher GPAs
tend to have higher college and university grades? The answer to this question
is pretty obvious, but worth giving since at least some people profess to be
puzzled by it.

Assuming the objectivity of grading, a difference in the magnitude of aver-
ages between comparable profiles represents a difference in the merit of the
work, and one may presume, in the scholarly capacities of the students. It is
thus plausible that GPA differences among comparable profiles of secondary
school graduates are correlated with differences in college and university aca-
demic performance. Differences in averages of incomparable profiles, however,
are no indication of academic capacity and will have no such correlation. Fur-
ther, as mentioned in section 4, differences in the bare averages between two
profiles give no hint as to whether the profiles in question are comparable, in
which case the difference is significant, or incomparable, in which case it is not.
Thus, in a heterogeneous population in which some pairs are comparable and
others incomparable, there will be an ambiguity in the meanings of GPA differ-
ences. Some differences will indicate a difference in scholarly talent or profi-
ciency, others will be independent of this. To put this in terms of probabilities,
let p and q be the profiles of students P and Q, and let µ(p) and µ(q) be the
averages of p and q in some ordinal scale. Then (Prob[X / Y] is the conditional
probability of X given Y)

Prob[P has more talent than Q / p and q are comparable and µ(p) > µ(q)] is high

and

Prob[P has more talent than Q / p and q are incomparable and µ(p) > µ(q)] =
Prob[P has more talent than Q]

From which it follows that, when P, Q are randomly chosen students from this
heterogeneous population,

Prob[P has more talent than Q / µ(p) > µ(q)] > Prob[P has more talent than Q].
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Hence, on the assumptions mentioned, given that µ(p) is higher than µ(q) and
no other evidence, it is a better than even bet that P will do better than Q in
college or university studies. It must however be kept in mind that this probabil-
ity is a mix of probabilities of two quite distinct sorts; one sort is an indicator
of academic talent, the other is independent of it.

Further, and worse, as the number k of courses increases the proportion of
incomparable profiles increases very rapidly. Thus for a given student popula-
tion, as the number of courses increases the second of the above conditional
probabilities takes on greater weight and proportionally fewer differences in
grade average will indicate difference in scholarly talent or proficiency. So, the
more comprehensive and varied the data, the worse the correlation between
grade average and what it is supposed to predict. That is the very definition of
a non-robust method.

7. PRECISION AND PERCENTAGES

The difficulties with grade averaging do not have to do with precise versus
vague ways of measuring. It is not a matter of figuring things out to a lot of
decimal places, as the above discussion should make clear. Not every compara-
tive concept admits of taking midpoints: Are potato chips midway in saltiness
between chocolate ice cream and anchovies? Discriminations may be quite
fine—as they are in some of us for saltiness—without determining midpoints.
What would be required to make grade averaging meaningful are principles, not
mere conventions, that would show this and why some ordinal scales are correct
and others not. The principle that, for example, an A and an E should average
to a B is obviously no help here: That is just to say that B should be the
midpoint between A and E, and can hardly be advanced as support for itself.

Percentages, when used with care, are free of the vicissitudes wrought by
changes of scale that infect grade points. The weighted average of percentages
is under certain conditions again a percentage, for a percentage or proportion is
an absolute measure. Whoever has taught knows that percentage calculations
can often be a great help in grading when the conditions are right; when, for
example, questions of equal and independent importance constitute an examina-
tion. But if conditions are not right, if the knowledge or skills to be mastered
does not admit of quantification in this way, then to record a grade as a percent-
age rests upon a vitiatingly false presupposition: The quality of Louise’s lucid
and elegant proof of the theorem clearly exceeds that of Justine’s more pedes-
trian if adequate argument. This does not mean that there is some material of
which Louise has mastered 95% to Justine’s 75%. These numbers signify no
more than an ordering in this context, and their amalgamation in averages is
hence equivocal and baseless, yet another resort to the numerological fallacy.

Further, percentages must be weighted in averaging: Differential grading poli-
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cies are a fertile ground for confusion about this. Since “It [is] not reasonable
to assume that grades from all courses at a university are determined by a single
ability construct,” researchers have used factor analysis to partition courses into
subsets of comparable courses.9 Suppose there are just two exclusive classes:
natural science (NS) and humanities and social science (HS) and that Justine
passed three of her four NS courses and failed the one course she took in HS.
So she passed 75% of her NS courses and 0% of her HS courses. Maurice, on the
other hand, passed his one NS course and just one of his four HS courses, so he
passed 100% of his NS courses and 25% of his HS courses. (See Table 10.)

Maurice thus passed a higher percentage of courses than did Justine both in
NS and in HS (100% to 75% and 25% to 0%). But Justine passed a higher
percentage overall—60% to Maurice’s 40%, and Maurice’s (unweighted) aver-
age percentage of courses passed is the average of 100% and 25% or 62.5%
which is higher than Justine’s average of 37.5%. But Justine passed a higher
percentage overall—60% to Maurice’s 40%. The right calculation here is not
the raw average of the percentages, but the average weighted by the proportions
of courses in each term. Justine took 4/5 of her courses in NS and Maurice took
1/5 in NS. These ratios are reversed in HS. So the weighted averages of courses
passed are:

Justine: (4/5)(75%) + (1/5)(0%) = 60%
Maurice: (1/5)(100%) + (4/5)(25%) = 40%

The moral is simple: Handle percentages with care.10

8. CONCLUSIONS AND MODEST PROPOSALS

A few conclusions are easy to state.
First, grades do not support consistent averaging. A difference in grade aver-

ages sometimes indicates a difference in scholarly accomplishment, when one
profile strictly dominates another, but more often is an artifact of scale. Arbi-
trary or conventional shift of scale, independent of academic performance, can
permute students’ rank in class, and that is the source of the inconsistency. Since

TABLE 10. Weighting Percentages

Subset Justine Passed Maurice Passed

NS 3/4 75% 1/1 100%
HS 0/1 0% 1/4 25%
All Courses 3/5 60% 2/5 40%
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grade averages carry no pedigree, they do not distinguish between the two sorts
of cases. This leads to an amalgamation of significant and insignificant numeri-
cal comparisons.

Grade averages do not predict performance very well, but it is a question why
they should predict it at all, why a higher GPA lends any probability whatever
to a prediction of scholarly superiority. The amalgamation of the two sorts of
averages—significant and insignificant—answers this.

Is there one capacity, let us call it scholarly competence, present in varying
degrees in the academic population, that manifests itself in scholarly perfor-
mance? Probably not, but this article neither offers nor presumes a response to
the question. If there is such a capacity, its extent will be most clearly manifest
in cases of strict dominance, when one student’s work is never worse and some-
times better than another’s, and there grade averages tell the right story. When
profiles are incomparable, the data are silent on the presence and comparative
extent of the capacity. And we have seen that the use of grade averages to
predict academic performance is precisely the contrary of a robust method: more
data means worse fit.

It must also be emphasized that the contradiction in grade averaging depends
not at all on the evident and often remarked difficulty of representing distinct
capacities, such as those required in different subjects, in one index. Nowhere
has it been presumed that different skills are at issue in the different elements
of profiles. Indeed, it is compatible with the above argument that the elements
of profiles are grades in the same subject. One can, for example, take profiles
to give the grades of different students in the same course: So, suppose the five
football players in a psychology course all get A’s, and that the five basketball
players get four A’s and a C in the same course. Then the footballers are better
psychologists than are the basketballers, and the GPAs of the two profiles show
this. No question. If, however, the footballers get all C’s and the basketballers
three A’s and two D’s, then the data entail nothing about the relative psychologi-
cal talents of footballers and basketballers. The contradiction in grade averaging
is a structural feature of the method, dependent not at all upon substantive prin-
ciples.

The argument to the conclusion that grade averaging is inconsistent assumes
the simplest case: courses are symmetrical, none being more important than any
other, all profiles include the same number of courses, and averages are direct
and unweighted. Differential weighting or otherwise tinkering with the method
cannot soften the inconsistency, for the simplest case will always be a special
instance of its ramifications.

Nothing that is said here should be construed as an argument against grading.
Grading is an obvious and essential part of pedagogy. Students have a right to
fair and competent evaluation, and most who know about the matter will agree
that teachers and evaluators do all that they can to assure that this right is
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respected. Certainly, the presumption operative here—that grades are an objec-
tive measure of scholarly accomplishment—is an ideal, not a settled fact, but
that, and the considerable difficulty with which bias and subjectivity are over-
come, takes nothing away from the worthy importance of grading.

The results of the article are for the most part negative: It is shown that a
prevalent method is inconsistent. No specific recommendation grows naturally
out of this, if it is not that educators should cease to use and calculate GPAs.
What should or could replace the GPA as an index of scholarly merit and ac-
complishment? If what is wanted is a single index that conforms to dominance
where it exists and also fixes incomparable comparisons in some uniform way,
the answer is that so long as grading is ordinal measurement, it is virtually
certain that no single index can do this. It has been known at least since 1951,
when Kenneth Arrow published his famous impossibility result (Arrow, 1951),
that the amalgamation of a collection of strict simple orders (transitive, asym-
metric, connected) into a collective strict simple order satisfying quite weak
structural constraints (all of which apply obviously to the case of course and
class ranks) is impossible. So that question is settled.

Grades and their averages have assumed an enormous importance in the
United States today. After the wealth and class of one’s parents, the sort of
education that one receives is perhaps the most significant factor in determining
one’s social and economic class, and grade averages, from middle school
through admission to graduate and professional school, are a primary instrument
of selection and tracking. What is said and proven above shows that the current
system of grading and averaging cannot support the great social and economic
weight that burdens it. What is to be done? Here are a few modest proposals.

First and simplest, those who cannot counter the above arguments should
ignore GPAs. That is pretty easy to do, since they are usually accompanied with
transcripts or other records, and when they are not, policy can always require
these.

Second, it is time that the great obscurities and inequities in grading and
averaging be considered in a general academic and political setting. Some re-
sponsible authority should convene a committee of methodologically knowl-
edgeable and concerned people to consider at least the following obvious ques-
tions:

What sort of uniform code to guide grading practices in secondary schools and
higher education would eliminate, or at least hinder, shortcomings such as
grade inflation, subjectivity, and variation among institutions, of the present
congeries of systems?

What sort of uniform code for summarizing the information in a transcript or
course record can strike a good compromise between too much information
to handle and too little information to support academic decisions?
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To what extent should educators at different levels be responsible to provide
summary evaluations of students for the use of others: secondary school
teachers for colleges and universities, college and university teachers for em-
ployers and graduate and professional schools?

These are difficult questions, both technically and politically. They need to
be faced and answered. Our current practices yield neither justice nor truth.

APPENDIX: THE COMPARABILITY AND
INCOMPARABILITY THEOREMS

We recall some definitions. A (student) profile

p = <p1 . . pi . . pk>

is an ordered k-tuple of grades from the set {E, D, C, B, A}. To simplify the argument
we restrict consideration to profiles of the same number k of grades. Profiles p and q are
equivalent if they have the same numbers of all grades. A profile p strictly dominates a
profile q if for some permutations p′ and q′ of p and q, p′j > q′j for some j, and p′i ≥ q′i for
all i. p simply dominates q if p′i ≥ q′i for all i. Profiles p and q are comparable if either
simply dominates the other, otherwise incomparable.

An ordinal scale is an assignment of numbers to grades that preserves the relation of
better than.

The proof of the comparability theorem is simple and straightforward:
Comparability theorem. If p and q are comparable profiles of length k and γ is any

ordinal scale, then

p strictly dominates q iff (1/k)Σi γ(pi) > (1/k)Σiγ(qi)

p simply dominates q iff (1/k)Σi γ(pi) ≥ (1/k)Σiγ(qi)

p is equivalent to q iff (1/k)Σi γ(pi) = (1/k)Σiγ(qi)

Proof: Assume p and q to be comparable and γ to be any ordinal scale. Then p strictly
dominates q iff p is nowhere worse and somewhere better than q, so

p strictly dominates q iff γ(pi) ≥ γ(qi) for all i, and for some j γ(pj) > γ(qj)
p strictly dominates q iff Σi γ(pi) > Σi γ(qi)
p strictly dominates q iff (1/k)Σi γ(pi) > (1/k)Σi γ(qi).

The second and third clauses are proved analogously.
The proof of the incomparability theorem is less direct. Recall that it states that if p

and q are incomparable profiles (in every permutation each is somewhere better than the
other) then the order of their averages varies with scale: Change of scale can make their
averages equal or either greater than the other. First a few definitions and conventions.
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To simplify notation we denote the grades E, D, C, B, A by their values in the four-
point scale. So, 0 represents E, 1, represents D, 2 represents C, 3 represents B, and 4
represents A. Thinking of grades in this way, for each grade x ∈ {0, 1, 2, 3, 4} and each
profile p, let n(p,x) be the number of grades in p equal to x. Then for each ordinal scale
γ and each profile p,

Σi γ(pi) = Σx n(p,x)γ(x).

A monotone transformation of numbers is a function that always assigns greater num-
bers to greater numbers and equal numbers to equal numbers. Clearly, every monotone
transformation of any ordinal scale is an ordinal scale, and every ordinal scale is a mono-
tone transformation of the coding in 0, 1, 2, 3, 4. In view of this, we simply identify
ordinal scales with monotone transformations of {0, 1, 2, 3, 4}.

The canonical permutation of a profile p is that permutation of p in which the ele-
ments of p appear in increasing order. So if p is canonical and i ≤ j, pi ≤ pj.

We can now state and prove a lemma that immediately entails the Incomparability
theorem:

Lemma. If q does not simply dominate p then for some ordinal assignments γ and δ

(i) Σx n(p,x)γ(x) = Σx n(q,x)γ(x)

(ii) Σx n(p,x)δ(x) > Σx n(q,x)δ(x)

Proof. Assume without loss of generality that p and q are both canonical and that q
does not simply dominate p. Then for some index i, pi > qi. Hence all of pi, pi+1, . . . pk

are greater than or equal to pi, while qi < pi, so p includes fewer grades lower than pi

than does q. From this it follows that for some grade y greater than 0 (i.e., better than
E), there are more grades at least as good as y in p than there are in q, i.e.,

Σx≥y n(p,x) > Σx≥y n(q,x).

(Recall that p and q are ordered by ≤.) Let g be the least such grade, and define the
monotone transformation ϕg

If x < g then ϕg(x) = x

If x ≥ g then ϕg(x) = x + m

where m is

Σx x[n(p,x) − n(q,x)]
Σx≥g [n(q,x) − n(p,x)]

.

Since Σx≥gn(p,x) > Σx≥gn(q,x), the denominator of m is negative, not zero. Hence m is
negative, positive, or zero accordingly as Σipi is greater than, less than, or equal to Σiqi.
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We have:

Σx x[n(p,x) − n(q,x)] = Σx≥g m[n(q,x) − n(p,x)] Σx n(p,x)x + Σx≥g

n(p,x)m = Σx n(q,x)x + Σx≥g n(q,x)m Σx<g n(p,x)φg(x) + Σx≥g n(p,x)φg(x) = Σx<g

n(q,x)φg(x) + Σx≥g n(q,x)φg(x) Σx n(p,x)φg(x) = Σgn(q,x)φg(x).

This establishes (i). To prove (ii) set δ =ϕ g + 1. This completes the proof of the lemma.
The incomparability theorem now follows immediately:

Incomparability Theorem. If p and q are incomparable then there are ordinal scales in
which p has a greater average than q, in which q has a greater average than p, and in
which their averages are equal.

Notice that in the proof of the lemma we actually establish something a bit stronger,
namely that:

If p, q, are any profiles, then p strictly dominates q iff p′i > q′i for some i, and for all j,
p′j ≥ q′j, where p′ and q′ are the canonical permutations of p and q.

This is a consequence of the symmetry of all courses, that no grade is more important
than any other, and it shows that canonical permutations live up to their name: Compara-
bility is decided by the relations between canonical permutations.

NOTES

1. Thanks to David Beard, head counselor of Woodrow Wilson High School in Long Beach,
California, to Carol Entler, Registrar of Scripps College, and to Edris Stuebner, erstwhile Regis-
trar of the Claremont Graduate University, for generous help and information. Thanks to Kerry
Odell of Scripps College for helpful comments, to an anonymous referee for suggesting the
Incomparability Theorem, to the editor of this journal for patient counsel, and thanks above
all to my colleagues Dale Berger, David Drew, and Charles Young for valuable counsel and
criticism.

2. See Milton, Pollio, and Eison, 1986, chapter 2 and pp. 218–223, for a critical discussion of
applications and interpretations of GPAs. The authors hold the GPA to be meaningless and
recommend that it be abolished, but they do not mention the inconsistency described here.

3. Or did require this in 1991. See Siegel and Anderson, 1991.
4. Suppes and Zinnes, 1963, is a thorough development of the subject.
5. Masses and distances are squared in the Newtonian law of universal gravitation, but the pres-

ence of a constant specifying the units of mass and distance assures that the law is invariant
for shifts of scale. Length squared, of course, gives the area of a square.

6. The simple truth is that all empirically adequate scales for the measure of weight and length
are related by ratio or multiplicative transformations: weight in pounds = 2.2(weight in kilos).
Empirically adequate temperature scales, including the Celsius and Fahrenheit scales, are related
by affine or linear transformations: F = 1/5C + 32; C = 5/9F + 160/9. These permit averaging,
but give no meaning to ratios. Absolute temperature scales, such as the Kelvin scale, which
figure prominently in ideal gas laws, are another story, and this is not the place to tell it.
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7. The Incomparability Theorem was suggested by a remark of a referee.
8. The puzzle was raised in a question by Dale Berger.
9. Young, 1990. The example is mine. There is no evidence that the author succumbs to the fallacy

illustrated here. The inconsistency in grade averaging is however not mentioned.
10. That Maurice can have higher percentages in both subsets and a lower percentage overall is an

instance of Simpson’s paradox. See Simpson, 1951.
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